Run 2 Luminosity Progress Record peak inst. luminosity 3.6 E 10³² cm⁻² s⁻¹ Record luminosity/week 73 pb⁻¹ Record luminosity/month 250 pb⁻¹ Total Luminosity delivered 6.5 fb⁻¹ # Projected TeVatron Performance Pier Oddone - March 20, 2009 - Tevatron performance is excellent - Detectors are well understood - Smooth data taking - Smooth data processing - Sophisticated analysis techniques #### **Tevatron Physics Impact** - Nearly 100 journal publications last year alone - About 60 Ph.D.'s / year over the last few years - About 3500 physicists have participated on the CDF and D0 experiments # New Results Since Summer 08 #### public web pages http://www-cdf.fnal.gov/physics/W09CDFResults.html http://www-d0.fnal.gov/Run2Physics/W09D0Results.html | Analysis | | | |---|----------------------|-----------------| | Search for High-Mass Resonances with Lepton Flavor Violating Decays | 1 fb ⁻¹ | WebPage | | Search for Gluino-Mediated Shottom Production | 2.5 fb ⁻¹ | WebPage | | Search for Fermiophobic Higgs Boson Decaying to Diphotons | 3.0 fb ⁻¹ | WebPage | | Search for Anomalous Diphoton + X Production | 2.0 fb ⁻¹ | WebPage | | Search for a Heavy Resonance Decaying to ZZ 2.9 fb ⁻¹ | | WebPage | | Search for GMSB SUSY MOdels in the yy+MET Final State 2.0 fb ⁻¹ | | WebPage | | ottom Physics Analysis | Luminosity | More Informatio | | Evidence for a Narrow Structure in the J/ψ φ mass spectrum in B J/ψ φ K decays | | WebPage | | A Precision Determination of the mass of X(3872) using J/ Ψ π π Decays | | WebPage | | ectroweak Physics | | | | Analysis | | | | Allaryons | | | | Bottom Physics | | | | |---|---------|---|-------------------------| | Analysis | | | | | A search for excess dimuon production in the radial region (1.6<10) cm at the D0 experiment | 1.0 fb | | Web page | | A new expected upper limit on B(B_s->mu^++mu^+-) using 5 fb-1 of Run II data | 5.0 fb | | Web page | | Evidence for the decay B0s->Ds(*)Ds(*) and a measurement of DeltaGamma_s^CP/Gamma_s | 2.8 fb | -1 | Publication | | Measurement of the angular and lifetime parameters of the decays Bd to J/psi K*0 and Bs to J/psi phi | | 2.8 fb ⁻¹ <u>Publication</u> | | | Observation of the doubly strange b baryon Omega_b*- | 1.3 fb | -1 | Publication | | Electroweak Physics | | | | | Analysis | | Lumino | More | | | | | Intomatic | | Measurement of the W boson mass with 1 fb-1 of D0 Run II data | | 1.0 fb | 1 Web page | | Measurement of WW production cross section with dilepton final states in pp(bar) collisions at sqrt(s)=1.96 TeV and II anomalous trillinear gauge couplings | mits on | 1.0 fb | -1 Web page | | Measurement of the Zy-vvy cross section and limits on anomalous ZZy and Zyy couplings | | 3.6 fb | 1 Publicatio | | Evidence of WW+WZ production with lepton+jets final states in pp(bar) collisions | | 1,1 % | 1 Publicatio | | Measurement of sigma(ppbar → Z + X) Br(Z → tau+tau-) | | 1.0 fb | 1 Publicatio | | New Phenomena | | | | | Analysia | Lumin | | ore Information | | Analysis | Lumin | cisity M | ore Information | | odent search for New Physics at D0 in final states containing leptons | 1.01 | | Web page | | u sneutrino particles in the electron plus muon final state at D0 | 4.11 | | Web page | | ction of charginos and neutralinos in the trilepton final state usin 2.3 fb-1 of data | 2.31 | | Publication | | one lightest scalar top quark in events with two leptons in ppbar collsions | 1.01 | | Publication | | Search for charged massive stable particles with the D0 detector | 1.11 | b*1 | Publication | | Monof chargeous and mineralized in the tripleto final state usin 2.3 for if data
in lighted state to pour in reverse thin the inspection proper collisions
Search for charged maskins states particles with the light dispect collisions.
American | | | | | Analysis | | | More
Information | | Analysis | | .ummosity | | | Combined Upper Limits on Standard Model Higgs Boson Production from the D0 Experiment in 0.9-4.2 fb-1 | | 4.2 fb ⁻¹ | Web page | | Combined CDF and Dzero Upper Limits on Standard Model Higgs-Boson Production with up to 4.2 fb-1 of data | | 4.2 fb ⁻¹ | Web page | | Search for the standard model Higgs boson in the tt(bar)H->tt(bar)bb(bar) channel | | 2.1 fb ⁻¹ | Web page | | Search for associated Higgs boson production with like sign leptons in pp(bar) collisions at sqrt(s)=1.96 TeV | | 3.6 fb ⁻¹ | Web page | | Search for ZH->eebb and ZH->mumubb production in 4.2 fb-1 of data with the D0 detector in pp(bar) collisions at sqrt(s)= | .96 TeV | 4.2 fb ⁻¹ | Web page | | Search for a Fermiophobic Higgs boson in the diphoton final state using 4.2 fb-1 of D0 data | | 4.2 fb ⁻¹ | Web page | | Search for the standard model Higgs boson in tau final states | | 1.0 fb ⁻¹ | Web page | | Search for Higgs boson production in dilepton plus missing energy final states with 3.0-4.2 fb-1 of pp(bar) collisions
sqrt(s)=1.96 TeV | at ; | 3.0-4.2 fb | Web page | | Search for h->aa->4mu or h->aa->2mu2tau with 3.7 fb-1 at D0 in Run II | | 3.7 fb ⁻¹ | Web page | | Search for the standard model Higgs boson in yy final states at D8 with L=4.2 fb-1 | | 4.2 fb ⁻¹ | Web page | | Search for WH associated production using a combined Neural Network and Matrix Element approach | | 2.7 fb ⁻¹ | Web page | | Search for the standard model Higgs boson in diphoton final states | | 2.7 fb*1 | Publication | | Search for neutral Higgs bosons at high tan beta in the b(h/H/A) to btau+tau- channel | | 0.3 fb ⁻¹ | Publication | | A search for associated W and Higgs boson production | | 1.0 fb ⁻¹ | Publication | | A search for the standard model Higgs boson in the missing energy and acoplanar b-jet topology | | 0.9 fb ⁻¹ | Publication | | Search for neutral Higgs bosons in multi-b-jet events in ppbar collisions | | 0.9 fb ⁻¹ | Publication | | CD Results | | | | | | | | Service - | | Analysis | | | | | Measurement of Z/gamma*+jet+X angular distributions in ppbar collisions at sqrt(s)=1.96 GeV | 1.0 | n-1 | Web Page | | Measurement of differential cross sections of Z/gamma^*+jets+X events in pp(bar) collisions at sqrt(s)=1.96 TeV | | ofb*1 | Publication | | Measurement of gamma+b+X and gamma+c+X production cross sections | | 16-1 | Publication | | Measurement of the differential Z/gamma**+jet+X cross sections | 1.0 | no-1 | Publication | | op Physics | | | | | Analysis | | minosity | More Informat | | | | | | | Search for tt(bar) resonances in the lepton+jets final state in pp(bar) collisions at sqrt(s)=1.96 TeV | | 1.6 fb ⁻¹ | Web page | | Search for the standard model Higgs boson in the tt(bar)H->tt(bar)bb(bar) channel | | 1.1 fb ⁻¹ | Web page | | Combination and interpretation of tt(bar) cross section measurements with the D0 detector | | .0 fb ⁻¹ | Web page | | Combination of CDF and D0 results on the mass of the top quark | | -3.6 fb*1 | Web page | | Combination of the D0 top quark mass measurements | | -3.6 fb ⁻¹ | Web page | | Measurement of the top quark mass in the electron-muon channel using the Matrix Element method with 3.6 fb-1 Measurement of the top quark mass in the lepton-tiets channel using the matrix element method on 3.6 fb-1 of D3 Run II | | .6 fb ⁻¹ | Web page
Web page | | Measurement of the top quark mass in the lepton+jets channel using the matrix element method on 3.6 fb-1 of D3 Run II Measurement of anomalous top quark couplings | cata 3 | 1.6 fb ⁻¹ | Web page
Web page | | Measurement of anomalous top quark couplings Observation of single top production | | 1.7 fb ⁻¹ | Web page
Publication | | Measurement of the tibar cross section and top quark mass extraction using dilepton events | | .3 fb ⁻¹ | Publication | | Search for admixture of scalar top quarks in the ttibar) lepton-jets final states | | 0.0 fb ⁻¹ | Publication | | Search for anomalous top quarks in the tiquary reportering states | | 0.9 fb 1 | Publication | | | | | - Marine Marine | # 10 orders of magnitude # HIGGS # SM Higgs exclusion by CDF # **Exclusion Decomposition** # CDF-D0 Combined Exclusion $160 \text{ GeV} < M_H < 170 \text{ GeV}$ is excluded at 95% CL! # **SM Higgs Limit Projections** with 10/fb both experiments could reach SM cross section down to 115 GeV # Top Mass $M_{top} = 173.1 \pm 0.6 \text{ (stat)} \pm 1.1 \text{ (syst)} \text{ GeV/c}^2$ # W mass $M_W = 80413\pm48 \text{ MeV (CDF, 0.3 fb}^{-1})$ = 80401 $\pm44 \text{ MeV (DØ, 1 fb}^{-1})$ $\Gamma_W = 2032\pm73 \text{ MeV (CDF)}$ world's most precise single measurements! # Precision => Higgs Constraints Expected now with all constraints : $M_{H} = 90 \, ^{+36} \, _{-27} \, GeV$ $M_{H} < 163 \, GeV \, @ \, 95 \, \% \, CL$ #### With 10 fb⁻¹ If dMw=15 MeV and dMtop=1 GeV [for Mw= 80.400] expect $M_H = 71 + 24 - 19 \text{ GeV}$ M_H < 117 GeV @ 95% CL ! # Single Top Observation March 9, 2009 $D\emptyset : \sigma_s + \sigma_t = 3.94 \pm 0.88 \text{ pb}$ **CDF**: $\sigma_s + \sigma_t = 2.3 + 0.6 - 0.5 \text{ pb}$ final state is very similar to WH # EXOTICS # L = 2.5 fb¹ data Drell-Yan QCD Other SM 10² 10³ 10⁴ 100 200 300 400 500 800 700 800 900 1000 M(ee) (GeV/c²) ## Search for High Mass e⁺e⁻ Resonances CDF (DØ) exclude RS graviton with mass below 850 (900) GeV/c² for k/MPI=0.1 | | Z' | Z' | |--------------|---------------|------------| | \mathbf{m} | odel | mass limit | | | Z_I' | 789 | | 2 | $Z'_{ m sec}$ | 821 | | 2 | Z_N' | 861 | | | Z'_{ψ} | 878 | | | Z'_{χ} | 892 | | | Z'_{η} | 982 | | Z | SM | 1030 | | | | | # Di-muon Resonances For the first time beyond one TeV for SM-Z'! - Search in $1/m_{\mu\mu}$ in which detector resolution is ~const: - 17% inverse mass resolution at 1 TeV # **Discovery Watch** Several results show discrepancies with the SM #### 2.5σ effects Are these just statistical fluctuations or hints of new physics? ## **Multimuon Analyses** arXiv:0810.5357 [hep-ex] # Motivated by three long-standing discrepancies dating back to Tevatron Run I: - 1. $\sigma(pp \rightarrow b\overline{b}X)$ larger than expected from NLO QCD - 2. Time-integrated mixing measured at Tevatron larger than LEP average $$\overline{\chi} = \frac{\Gamma\left(B^0 \to \overline{B}^0 \to I^+ X\right)}{\Gamma\left(B \to I^\pm X\right)} = \frac{\text{"same sign"}}{\text{"total"}}, \ B^0 = B_d^0 \text{ or } B_s^0$$ 3. low mass di-lepton spectrum inconsistent with expectations from heavy flavor. ## First, re-measure $\sigma(pp \rightarrow b\bar{b}X)$ - PRD 77, 072004 (2008) - Strategy - Select dimuon events enriched in $b\rightarrow\mu$, $\overline{b}\rightarrow\mu$ - Require our highest tracking precision to separate out prompt and charm backgrounds. - Fit muon impact parameters to separate contributions #### Sample - Well modeled by simulation - High purity: $\sim 40\%$ bb #### Result - Measurement accuracy 9% - Good agreement with theory Require muons have hits on innermost silicon layers (R=1.5cm) ## Next, investigate "other" dimuons - observe many more events rejected by the tight selection than expected. - implies more background than expected. - Investigate this background. Much of it was not removed because it appears at large impact parameter! - QCD sources (including heavy flavor) of dimuons have $d_0 < 0.5$ cm - "Ghost" events have much larger impact parameter! #### **Ghost sources** The rate of muons in the ghost sample is four times higher than the expectation. #### Several known sources have been evaluated: - Hadrons faking muons - decay-in-flight of K^{\pm} , π^{\pm} , K_S , Λ , etc. - Interactions in detector material - At this point, these sources do not seem to explain the entire sample. - We are in a region of parameter space that is very challenging and largely uninvestigated. - We have chosen to publish the current results to report what we have learned. - We state that we do not understand the source of these events. - We do not claim that the source of the events is beyond the standard model. - Regardless of their source, this sample of events - has not been quantified before - very likely plays a role in the anomalies listed previously - The presence of ghost events is not confirmed by D0: http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/B/B57/B57.pdf # RARE DECAYS # $B_s \rightarrow \mu^+\mu^-$ | Limit 90% (95%) × 10 ⁸ | $B_s^0 \rightarrow \mu\mu$ | $B_d^0 \rightarrow \mu\mu$ | |-----------------------------------|----------------------------|----------------------------| | BaBar [PRD 77, 032007 (2008)] | n/a | 5.2 | | DØ | 7.5 (9.3) | n/a | | CDF [PRL 100, 101802 (2008)] | 4.7 (5.8) | 1.5 (1.8) | - Already at ~10*SM with 2/fb - Plenty of NP models already excluded - No improvements assumed - <1×10⁻⁸ (3×SM) at 10/fb per experiment # $B_{d,s} \rightarrow e^+\mu^-, e^+e^-$ - SM prediction very small < 1.0 x 10⁻¹⁵ - Larger BRs in some NP models (e.g. Leptoquarks) #### All measurements represent the current world best limits! | Channel | CDF Run II preliminary | BaBar | |--------------------------|--------------------------------|-------------------------| | | $(2fb^{-1})$ (@ 90(95)% C.L.) | (@ 90% C.L.) | | $Br(B_s^0 \to e^+\mu^-)$ | $< 2.0(2.6) \times 10^{-7}$ | ₹. | | $M_{LQ}(B_s^0)$ | $> 47.7(44.6) \text{ TeV/c}^2$ | <u>-</u> | | $Br(B_d^0 \to e^+\mu^-)$ | $< 6.4(7.9) \times 10^{-8}$ | $< 9.2 \times 10^{-8}$ | | $M_{LQ}(B_d^0)$ | $> 58.6(55.7) \text{ TeV/c}^2$ | $> 53.1 {\rm TeV/c^2}$ | | $Br(B_s^0 \to e^+e^-)$ | $< 2.8(3.7) \times 10^{-7}$ | <u> </u> | | $Br(B_d^0 \to e^+e^-)$ | $< 8.3(10.6) \times 10^{-8}$ | $< 1.13 \times 10^{-7}$ | # FLAVOR PHYSICS # $B^0(s) \rightarrow h^+h^-$ about 6000 events in 1 fb⁻¹ Possible precisions with 10 fb⁻¹ CDF with its trigger on secondary vertices is a serious competitor to the B factories - CDF has access B⁰, B⁰s e Λ_b - Direct $A_{CP} B^0 \rightarrow K^+\pi^-$ was measured with precision similar to B factories - Possible observation of direct A_{CP} in B⁰_s? ``` <1% on direct A_{CP} in B⁰→K⁺π⁻ <8% on direct A_{CP} in B⁰_s→K⁻π⁺ (SM predicts large value 30-40%) ``` # B_s^0 mixing phase: $B_s^0 \rightarrow J/\psi \phi$ - B⁰_s sector unique to Tevatron and fully unexplored - Δm_s excluded large NP magnitude in B_s^0 mixing (2006) - NP phase still unconstrained - Probe it through time-evolution of $B_s^0 \rightarrow J/\psi \phi$ decays - CDF and DØ observe a consistent fluctuation (same direction, same significance) - Current average $\beta s = 0.4$ • NP expectations βs = 0.5 ÷ 0.7 [Hou at al., Phys.Rev.D76:016004,2007] If NP phase is large (>0.5) Tevatron will observe it # $B_s \rightarrow \phi \phi \rightarrow K^+K^-K^+K^-$ #### CDF 2009 ~ 300 events #### **CDF 2005 - 8 events** $$BR(B_s \longrightarrow \phi \phi) = [1.4 \pm 0.6(stat) \pm 0.6(syst)] \cdot 10^{-5}$$ # $B_s \rightarrow \phi \phi \rightarrow K^+K^-K^+K^-$ ▶ First polarization measurement, comparing with $B_d \longrightarrow \phi K^*$ # NEW STATES ## Mass Measurement of the X(3872) State CDF: $m = 3871.61 \pm 0.16 \text{ (stat)} \pm 0.19 \text{ (syst)} \text{ MeV/c}^2$ - This is the most precise measurement to date - The value is below the D*D threshold, but within uncertainties. The explanation of the X(3872) as a bound D*D system is therefore still an option # Evidence for Y(4140) Narrow near-threshold structure in the J/ ψ ϕ mass spectrum in B⁺ \rightarrow J/ ψ ϕ K⁺ arXiv:0903.2229 $B^+ \rightarrow Y(4140) K^+; \quad Y(4140) \rightarrow J/\psi \ \phi \ ; \quad J/\Psi \rightarrow \mu^+\mu^-; \quad \phi \rightarrow K^+ \ K^-$ we measure: - m = 4143.0 ± 2.9 (stat.) ± 1.2 (syst.) MeV/c2 - $\Gamma = 11.7 + 8.3 5.0 \text{ (stat.)} \pm 3.7 \text{(syst.)} \text{ MeV/c2}$ # Observation of the Ω_{b}^{-} arXiv:0905.3123 - Interpreted as P(χ²) with 3 d.o.f., = 4.0×10⁻⁸, => 5.5σ - Fit results: - Mass: 6055.5±6.6 MeV/c² - > cτ₀: 338±100 μm - Yield: 18±5 ### Ω_b- Mass Measurements Compared - •D0 finds - •M(Ω_b -)=6165 ± 10(stat.) ± 13(syst.) MeV/c² • PRL **101**, 232002(2008) - CDF finds - •M(Ω_{b^-})= 6054.4 ± 6.8(stat.) ± 0.9(syst.) MeV/c² # Final Remarks - Scientific production of CDF and DZero is at its peak - The Tevatron era is far from being over - Maybe the best is yet to come